
[22]

where

[23]

where

On the other hand, if we let T + ~, [22]

since M(t;T) = M*I andMoreover, in the case where T = 0,

M(t;T) = 0, the equation [22] reduces to:

[24]

where

Since

environmental fees were delayed for

maintenance expenditure pattern would

where the firm is charged from the

horizon, More generally, under our

maintenance expenditure is positively

in fig.2:

ever, (T = CO), the expected

be higher than in the case

beginning of the planning

assumptions, the expected

correlated with T as shown

if the introduction of

reduces to:
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fig.2

3.2.2 Let us now turn to the relationship

expected environmental damage. Total damage

firm’s unit of land is defined as follows:

between T and total

attributed to each

Again by applying the It6’s Lemma it is possible to derive

the expected rate of variation of DTo~ , and therefore:
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[25]

11
In the case where T = 0, since M(t.;T) = M , equation [25]

reduces to:

[26]

where

On the other hand, if we let T + m, [25] reduces to:

[27]

where

Since, again , the expected total

damage under T + m will be higher than under T = 0. More

generally, under our assumptions, the expected total damage will

be positively correlated with T, as shown in fig.3.
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fig.3

3.2.3 Finally let us consider the effect of uncertainty about

future realizations of the soil quality parameter e on maintenance

expenditure, the firm’s market value and environmental damage.

According to [14] and [20], maintenance expenditure is an

increasing function of MIX and M(t;T). This implies that the

effect of uncertainty on m can be analyzed by looking at the

effect of”U2 on M
11
, for t~T, and on M(t;T) for OSt < T.

From [13] and [19], it follows that if @ > 1 (0 < $< 1) an

increase of a2 leads to an increase (decrease) in MX* and in

M(t;T). In other words, higher volatility about future

realizations of soil quality may either lead to an increase or a

decrease in the maintenance expenditure pattern depending on the
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parameters a, p and v which make up 4.

Following the same line of reasoning, the same results apply

to the firm’s market value.

The effect of uncertainty just described arises from the fact

that both the firm’s first and second stage instantaneous cash

flows, under optimal maintenance expenditure and x use, are convex

(concave) functions of e whenever @ > 1 (0 < @ < 1), As a result,

increased uncertainty tends to increase (decrease) the value of

future cash flows the firm expects to obtain from one unit of

land. This, in turn, from the firm’s point of view, is equivalent

to a reduction (increase) in marginal cost associated with the

decision of “improving” soil quality through maintenance

expenditure, Or, taking a slightly different perspective,

convexity (concavity) of the firm’s profit function implies that

the disadvantages of expected “bad news”, i.e. low future

realizations of e, are more (less) than compensated for by the

advantages of “good news”, and, the marginal expected

profitability of maintenance expenditure increases (decreases).

Let us now analyze the action of uncertainty with regard to

the expected environmental damage per unit of land. From [25],

[26] and [27], we obtain:

In other words, if, as in fig.3, we assume total damage decreases

over time, increased uncertainty may either reduce or increase the

expected rate of such decline, depending, again, on the value of

the technical parameters which make up 0.
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4. THE AGENCY’S

TIME PROFILE

OPTIMAL MANAGEMENT RULES

FOR ENVIRONMENTAL FEES

AND THE CHOICE OF OPTIMAL

4.1 Before trying to characterize the choice of the optimal time

profile, let us

agency’s optimal

and x use.

We assume

take T as exogenously given and identify the

management rules, in terms of maintenance pattern

the agency wishes to maximize the following

objective function:

[28]

In other words:

- the agency is assumed to take care of environmental damages over

the entire planning horizon [O,@);

- the agency’s welfare function, which is assumed to be separable

in its arguments, includes the firm’s utility;

- the agency is assumed to receive a utility from collecting funds

through environmental fees, and the parameter P (0 < p < 1) has to

be interpreted as the net “social” benefit of such collection.

Adopting a procedure similar to that undertaken in section 3

when dealing with the firm’s maximization problem, the agency’s

optimal variable input level can be obtained:
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[29]

Moreover, since 0 < P < 1, the following inequality holds:

for given et. By substituting [29] by [28], and

keeping [8], the agency’s maximization problem reduces to:

[30]

By adopting the same procedure as in section 3, when dealing

with the firm’s II-stage maximization, and assuming the same

restrictions about the parameters 5, Y and 0, the solution for the

agency’s welfare value at II-stage is:
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[31]

where

The agency’s optimal maintenance

becomes:

expenditure rule then

[32]

which implies that the stochastic differential equation [2] reduces to:

[33]

We can now go on to I-stage maximization, on condition that

the agency’s welfare value at time T coincides with the discounted

scrape value given by [31]. Again following the same procedure

adopted in section 3, we obtain:
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[34]

where:

11
It is easy to show that, when t = T, N(T;T) = N . However,

unlike what was seen with regards to the firm, in this case :

In other words, if the agency were able to decide time

0, because, according to the

higher during the period

than during the period when

above

when

firms

profile T, it would choose T =

inequality its welfare is

environmental fees are charged
II

are exempt from taxation. Obviously, since N increases with P!

the higher the net marginal “social” benefit of collecting taxes,

the higher is the agency’s welfare loss in moving away from T = 0.

Moreover it is easy to obtain from [34]:
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fig.4

34

with as shown in fig.4.

The agency’s optimal maintenance expenditure policy in the

I-stage is

[35]

whilst

[36]

the

described by:

stochastic differential [2] for 0 reduces to:equation



Notice that, by replacing M(t;T) by N(t;T), the same results

described in 3.2.1, 3.2.2, and 3.2.3 apply to the agency.

4.2 On the basis of the results proposed in the above sections,

we may now consider the problem of optimal choice of T, assuming

that this choice is undertaken by the same subject for whom in

section 4.1 the optimality conditions for m and x were derived.

In the following discussion it will be assumed that, as far

as management decisions are concerned, only two strategies are

open to the firm: adoption of its own optimality rules for x and m

(described in equations [6], [14] and [18]), or, alternatively,

the agency’s rules (equations [29], [32] and [35]).

Let us start by summarizing in fig.5 the results obtained in

section 3 concerning the relationship between T and the firm’s

market value (evaluated at the beginning of the planning horizon)

and those derived in section 4.1 concerning the relationship

between T and the agency’s welfare value (evaluated at the

beginning of the planning horizon).
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fig.5

36

From [3] and [28] it can be easily shown that the following

identity holds:

[37]

If the firm adopts the agency’s optimal management rules,

according to [37], its market

equal to the agency’s optimal

value, hereafter VP(80;T), becomes

welfare value, described in fig.4,



plus the expected value of the difference between discounted

social damages in [0,T) and the agency’s utility derived from

taxation in [T,o), which are both evaluated under the agency’s

optimal rules. On the other hand, if the agency “accepts” the

firm’s management rules, according to [37] its welfare value,

hereafter W=(OO;T), becomes equal to the firm’s market value,

described in fig.1, minus the expected value of the above

difference evaluated, now, under the firm’s optimal rules.

Considering the agency’s objective function, if it were able

to monitor the firm’s actions, and if it wanted the firm to adopt

the optimal “social” rules, [29], [32] and [35], the best decision

would be non-postponement of the introduction of environmental

fees. However, if the principal is unable to carry out such

monitoring, he has to define an incentive which would induce the

agent to self-select the “socially” desired maintenance

expenditure pattern and x use. In our framework,

the agency has to identify a set of T values which

firm’s market value under the agency’s management

than under its own rules:

firms assumes the meaning

exchange for accepting the

in this case the time

this means that

ensure that the

rules is higher

lag granted to

of a “premium” they will receive in

agency’s desired management rules. The

problem facing the agency consists of picking on, among the set of

time profiles which satisfy such a property, the one providing the

highest welfare value, T*.

Notice, however, that T* may not be “sustainable” or even

(5)
optimal for the agency . In fact we can take a different

perspective and imagine that the firm “offers” the agency, in
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exchange for acceptance of its own rules, the “opportunity” of

setting a different time profile, T
**

. If T’* is “sustainable”

and implies a higher welfare value than the one associated with

T* , then the agency will find it profitable ‘6).

To clarify the above statements, let us start by spelling out

the firm’s reaction in terms of management decisions to the

agency’s announcement of T. Since we assume the firm will choose x

and m after this announcement, its best reply function consists of

comparing its market value under its own optimal rules, WO;T),

with VP(60;T) . That is:

[38] (x,m) = max for given T

In other words, the firm will adopt its own optimal rules or the

agency’s ones depending on which, given T, brings the highest

market value.

On the other hand, taking account of the “incentive

constraint” [38], the agency will define the optimal time profile

by looking at the value of T which makes the welfare value

maximum. Formally:

[39]

In other words, the backward-induction logic requires that the

agency foresee that the firm will respond optimally to any time

profile announced.
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To provide, through a diagrammatic form, a solution for the

problem [39], let us preliminary describe the form taken on by the

firm’s best reply as implied by [38]. In this respect it is

possible to identify at least four situations.

Case 1 If the following inequalities hold:

the firm’s market value under

take, relative to V, the

appendix B):

the agency’s optimal rules, V*, may

forms depicted in fig.6 (see

39



fig.6

40

It is evident, in

solutions for [38] :

[40]

or,

[40’]

Whether [40] or

constraint [38]

depends on the

this case, that we can have two possible

[40’] represent a solution for the incentive

depends on the shape of Vp, which, in turn,

technical parameters related to the production



fig.7

function, damage function and maintenance technology as well as on

the net “social” benefit of tax collection ,P.

Case 2 If the following inequalities hold:

Vp may take on, relative to V, the forms depicted in fig.7:
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In this case, the solution for [38] appears to be:

[41]

Case 3 If the following inequalities hold:

Vp may take, relatively to V, the forms depicted in fig.8:
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fig.8

In this case, the solution for [38] appears to be:

[42]

Case 4 Finally, if the following inequalities hold:
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fig.9

Vp may take on, relative to V, the forms depicted in fig.9:

In this case, the solution for [38] appears to be:

[43]
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To summarize, the solution to incentive constraint [38] may

give rise to a variety of situations, which range from the one

([43]) where, whatever time lag is granted, the firm will never

find it profitable to give up its own optimal rules, to the one

([40]) where the firm will always find it profitable to

“internalize” the agency’s rules. There are intermediate

situations where the choice of T may affect management decisions

by switching the firm’s choice from its own rules to the agency’s

ones, and vice versa ([40’], [41], [42]).

On the grounds of these results, a characterization of some

representative solutions for [39] may be obtained by overlaying on

fig.6-9 the corresponding agency’s welfare value evaluated under

its own rules (W) and the firm’s ones (Wa). As shown above with

reference to the firm’s market” value under the agency’s

rules(x (p)’ ‘(p) ), the latter’s welfare value, evaluated under

(x m(,)), may take different shapes, depending, once again, on[a)’

the parameters of the technical relations considered and on p. As

a result, a great variety of solutions may be identified.

Hereafter, however, we shall merely consider those thought to be

sufficiently representative.

Let us start by assuming that the inequalities considered in

case 1 hold. Even if Wa may take different shapes, such

inequalities imply that as T tends to zero or infinite, Wa becomes

lower than W (see appendix B), as shown in figs.10a and 10b where

alternative shapes of Vp , picked from fig.6, are also drawn.
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fig.10b

fig.10a
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fig.11a

According to fig.10a the highest agency welfare value may be found

at T**. However since the firm will always find it profitable to

adopt (X(P), m[P) ), this time profile is not sustainable. Among

the sustainable time profiles, the best choice appears to be

non-postponement of the introduction of environmental fees, i.e.

T* = 0, On the other hand, if we find ourselves in the situation

described by fig.10b, T** appears to be both a sustainable and

optimal incentive: therefore, by delaying the introduction of tax

payment at date T** and allowing the firm to adopt its own optimal

rules, the agency reaches

If the inequalities

becomes lower than W when

a higher welfare value.

considered in case 2 hold, Wa still

T tends to zero, whilst it can be either

higher or lower than W when T tends to infinite. In figs.11a and

11b two possible shapes of W= are drawn together with a possible

shape of Vp picked from fig.7.
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fig.11b

In both situations, figs.11a and 11b, the only sustainable time

profile appears to be T* = 0.

If the inequalities considered in case 3 hold, Wa becomes

lower than W when T tends to infinite, whilst it can be either

higher or lower than W when T tends to zero. In figs.12a, 12b and

12c three possible shapes of Wa are drawn together with a possible

shape of Vp picked from fig.8.
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fig.12b

fig.12a
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fig.12c

Considering fig. 12a, both T**and T* are sustainable; however the

former, combined with firm’s choice (x(a), ‘(al ), provides the

agency with the highest welfare value. On the other hand, in

figs.12b and 12c the agency would reach the highest welfare value

by non-postponement
(*)

of the introduction of fees (i.e. T=0),

which however is not sustainable: in both situations T**and T* are

sustainable but the former is the best choice for fig.12b, whilst

the latter is best for fig.12c. Whilst in the situation depicted

in fig.12b the agency finds it convenient to allow the firm to
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fig.13a

adoptits own rules in exchange for a “short” period of tax

exemption, in fig.12c the agency finds it profitable to induce

acceptance of the “socially” optimal management rules through a

wider period of exemption from payments,

Finally, if the inequalities considered in case 4 hold, W~

can be either higher or lower than W when T tends to zero and

infinite. Again, in fig.13a, fig.13b two possible shapes of Wa are

drawn together with a possible shape of Vp picked from fig.9,
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fig. 13b

The situation described in fig. 12a may be regarded as symmetrical

with respect to the one depicted in fig. 10a: the agency would

achieve its highest welfare value at T* = 0, i.e. when no time lag

is allowed and the firm adopts as management rules (x
(p)’ ‘(p) ).

However, since the firm will never find it profitable to give up

its optimal rules, this time profile is not sustainable,

therefore, the agency has to look for a T** which makes it better

off under (x[a), m{a) ). Even in the situation depicted in fig.13b

the firm will never find it profitable to adopt (x{p), m(p)).

Nevertheless , in this case, the agency’s best choice would be to

introduce environmental fees from the beginning of the planning

**
period, i.e. T = 0, since, by doing so, it would achieve a

higher welfare value.
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5. FINAL REMARKS

The basic aim of the paper was to enhance the results

provided in other contributions on NPP control

insights concerning the role of policy instruments

suspected polluters’ productive decisions as

with further

in influencing

well as the

allocative properties of alternative regulatory schemes.

In particular we have concentrated on the application of what

has been termed an “indirect approach”, focusing on two issues

which, as far as we know, have received little attention. Firstly,

we have tried to deal formally with the possibility that the

production site’s physical characteristics (the firm’s “typology”)

may vary over time because of non-monitorable actions taken by

suspected polluters in conditions of uncertainty regarding the

performance of the actions themselves. Secondly, we accounted for

the possibility that the legislator might consider the opportunity

of delaying the introduction of management

Non-monitorability of the firms’

provides the agency with the rationale

practice incentives.

management practices

for selecting the time

profile at the beginning of the planning period. Moreover,

according to our findings, the decision of delaying the

introduction of “environmental fees” may, under certain conditions,

constitute an optimal decision from the agency’s point of view.

The analysis proposed in the above pages is undoubtedly

conditional on a number of assumptions introduced in the paper.

These assumptions concern the availability of information

regarding maintenance technology, the “form” of uncertainty, the
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general structure of the technical relationships which make up the

model, and the objective functions assigned to the hypothetical

actors.

As far as the maintenance technology is concerned, we have

assumed that the firm(s) and the agency share the same information

as well as the same uncertainty about future realization of the

soil quality index. The rationale behind this assumption is that,

even if at some point in time the firms are unaware of the

maintenance technology, the informational gap could be eliminated

by the agency by transmitting all the technical information it

possesses before setting the regulatory scheme. Furthermore, if

the performance of maintenance decisions is believed to be

affected by on-going exogenous shocks , the agency might also

include the probability distribution of such shocks in the

“informational package”.

Turning to the form of uncertainty, it has been assumed that

future realizations of the soil quality index will always be

uncertain, with a variance which grows linearly with the time

horizon. Obviously, this may not always be the case, and the

plausibility of modeling the uncertainty along the lines of a

Brownian motion process has to be assessed on a case by case

basis.

Analogous considerations apply to the assumptions concerning

the general

the paper.

analysis as

conclusions

which depends on the values taken by the parameters appearing in

structure of the technical relationships introduced in

Moreover, since we deliberately tried to keep the

more general as possible, rather than straightforward

a menu of possible results has been proposed, each of
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the model. It follows that to move a step forward with respect to

a merely theoretical analysis would require not only careful

assessment of the plausibility of the assumptions concerning the

general structure of the technical relationships, but also, a more

precise specification of the values taken on by all the relevant

parameters.

The set of relevant parameters includes not only those

characterizing the technical relationships, but also the net

“social” benefit of raising funds through taxation and the rate of

discount.

The former was introduced to take account of the possibility

that the social planner might receive a utility from taxation as

such. In this case, environmental charges not only play the role

of instrument for reducing the pressure exerted upon the

environment by private economic activities, but are also regarded

as means for collecting additional tax revenues. This double role

gives rise to a sort of trade-off between environmental quality

improvements and increased tax revenues. Depending on the relative

weight attached to these two conflicting objectives, different

optimal time profiles may arise. Again, the plausibility of

assuming the existence, from the agency’s point of view, of such a

trade-off should be

view, it should not

As far as the

discount rate, is

assessed on a case by case basis, but, in our

be discarded a

second relevant

concerned, it

priori.

“non technical”

should be noted

parameter, the

that we have

share the sameassumed that the social planner and private agents

intertemporal preferences. Since this assumption may appear to be

somewhat questionable, an interesting extension of the basic
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framework we developed consists of exploring the implications of

different discount rates in terms of management practice decisions

as well as in terms of optimal choice of the time profile for

environmental charges.

Further extensions include analysis of the implications on

policy design, of abandoning the hypothesis of identical

availability of information concerning the initial status of the

production site’s physical characteristics which are believed to

affect the extent of pollutant emissions at field level. Whilst

assuming the existence of uninformed agents should not

significantly modify our basic framework, in that its main

implication is that the

terms of expected value

firm’s reply function has to be defined in

according to the probability distribution

of 0, the case of an uninformed principal would make the structure

of the game much more complex from an analytical point of view. In

this case, the analytical framework will take on the form of a

true Principal-Agent model, where incentives take on the sense of

instruments to extract information from private agents about their

initial “typology”.
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FOOTNOTES

(1) For a discussion of (It6’s) diffusion processes and stochastic

differential equations see, for example, Arnold (1974) and Karlin

and Taylor (1981). For economic applications of stochastic

calculus techniques used throughout the paper, see Malliaris and

Brock (1982).

(2) Although w is set equal to zero for technical reasons, it is

not so implausible to

(potentially) polluting

or even zero. Examples

or nutrients contained

imagine situations where the price of

inputs is, relatively speaking, very low

are nitrogen fertilizers in EEC Countries

in slurry available for farms with mixed

crop-livestock production.

(3) In formulating these restrictions we are indebted to the work

of Vorst (1987) and Moretto (1991). Notice that G = ~ is just in

the middle of the domain of 6 and by this restriction we find that

the Hamilton-Jacobi-Bellaman equation [11] has only quadratic or

linear terms in %x “ The second restriction is for technical

reasons.

(4) Restriction y = ~@, introduced in the context of II-stage

maximization, together with Y = + implies 0 = P. Thus, our

assumptions imply that the shapes of the firm’s cash flow

function, gross of maintenance expenditure, at I-stage, and of the

firm’s cash flow function, gross of m, at II-stage, are the same

and differ only by a constant.

(5) In the context of the present paper the term “sustainable”

time profile refers to a T 6 [O,m) which, conditionally on
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makes the agency better off, that is:

(6) T* and T** indicate the sustainable time profiles which make

the agency better off under its own optimal rules and under the

firm’s optimal ones, respectively.

58



APPENDIX A

This appendix contains a general procedure to find a solution

of the control problems presented in the text.

Let F(Ot,t) be the maximum of the “value function” (market

value for the firm, welfare value for the agency) at time t. If

this function is differentiable, then F(et,t) has to be a solution

of the following dynamic programming equation:

where Ft, Fe and Fee are partial derivatives of F with respect to

the time and 0.

From the equation (A1) we are able to sum up both the firm

optimization at the second stage when F = VII, F~ = 0 and

C= c(a), and at the first stage when F = V, C = 1 with the

appropriate terminal condition at time T,respectively. Besides

11
setting F = W ~ Wt = 0 and C = C(P,2 we obtain the agency’s

optimization at the first stage, and, setting F = W, C = C[pll

and the terminal condition at time T, the agency’s optimization at

the second stage.

Equation (A1) is known as the Hamilton-Jacobi-Bellman

equation of the stochastic version of the optimal control theory.

Differentiating the right-hand side of (A1) with respect to

m, we get:

(A2)
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Substituting (A2) into A(1) the latter becomes:

(A3)

E = G and Y = ~ 4J the Bellman equation (A3) reduces to:

(A4)

with the boundary conditions:

F(eT;T) = ~ 6T@ , ~ > 0 and constant

F(0 ;t) = 0

Equations (A3) together with (A2) can be expressed as a

nonlinear second-order partial differential equation of parabolic

type in F, which is solvable under some restrictions on the

parameters of  marginal productivity of soil quality and of

maintenance technology.

Let us start with optimization at the first stage. Assuming
a .

where ~ stands for the scrape level of the value function at the

terminal time T.

A functional form candidate for a solution of this partial

differential equation is:

(A5) F(ot,t;T) = S(t;T) et+

Taking the partial derivatives of (A5) with respect to t and

e yields:

(A6.1) Ft = S’(t;T) &

(A6.2) ‘e =fPe~lF

(A6.3) ‘ee =44+-1) o~2F

Then the partial differential equation (A4) reduces to the

ordinary differential equation:
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(A7)

with boundary condition

S(T;T) = ~

Setting A = ~@2 and B = (r+6fP - _$@(@- 1)02) the ordinary

differential equation (A7) can be rewritten as:

(A8) S’ = -AS2+BS-C

(A8) is a Ricatti differential equation, which can be solved

by separation of variables. The solution is:

(A9)

where the constant K is determined by the boundary condition (A7),

(1) (2)
and S and S are the solution of the second-order

characteristic equation of the r.h.s of (A8), that is:

(A10)

In order for

two constants in

B2 - 4A > 0, it

Now imposing

the value F to be positive, at least one of the

(A10) must be positive. Under the hypothesis

follows, from the signs of (A10), that

the boundary condition (A7) to evaluate the

constant K, we get:
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It easy to check, from (A11), that S
(1)

is a locally

asymptotically stable level of maximal expected discounted value

if we let the horizon time T approach to infinite. In other words,

letting T tend to infinite, the scrape value disappears and the

(1)
root S is necessary and sufficient for the value function F,

i.e. the expected discounted flow of profit, to converge.

Finally the optimal expected value function can be written as

(A5) with S(t;T) given by (A11).

Considering now the maximization at the second stage it is

immediate to note that, since the horizon goes from T to infinite,

it becomes time homogeneous? i.e. the scrape value is equal to

zero and Ft = 0. The (A8) is no longer a differential equation

but only a second-order characteristic equation in S, which gives

two distinct roots as in (A10), Recalling that only S(~)guarantees

the existence of F , the optimal expected value function will be

(1)
as in (A5) with S(t;T) constant and equal to S .

Finally, it should

differential equation such

by [81, there might be a

be noted that with a stochastic

as [2] in the text, with f(m?e) given

positive probability that the process

{08} becomes zero (negative) or even infinite. On this matter

Vorst (1987) and Moretto (1991) showed that under the optimal

 maintenance policy this probability is zero for the cases under

analysis. In other words, the left boundary

boundary (infinite) are not attracting for

least in a finite expected time. In the rest

(zero) and the right

the process {O.]! at

of the paper we refer

to this result in guaranteeing the necessary and sufficient
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conditions for the firm’s value function [3], and the agency’s

welfare function [27] to exist (i.e. to be bounded).

APPENDIX B

From identity [37], if the r.h.s. is evaluated under the

agency’s management optimal rules, we get, at the beginning of the

planning period:

where {Ot) evolves according to [36] in [0,T) and to [33] in

[T,~).

Since, as indicated in the text the following limits hold:

it is possible to verify that, if T = 0:

whilst, if T = ~ :
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(B3)

Equations (B2) and (B3) allow us to examine the trends of

(B1) when T tends to zero or infinite. Recalling that

Since by combining the above inequalities, we get

described in the text.

behavior of (B1) in the interval [O,CO) we can

the four situations

To analyze the

take the first and second derivative with respect to T. The first

derivative yields:

(B4)

Since is positive, the sign of (B4) is

not determined a priori. Moreover, notice that (B4) describes the

64



“trade-off” between

evaluated according

the firm’s marginal loss when T increases,

to the agency welfare function, and the

expected marginal benefit the firm will receive, in terms of

reduced tax payments, when the introduction of fees is delayed.

Taking the second derivative we obtain:

(B5)

where:

P
minimum given by ~ = 0, as shown

In the same way, from [37]

function evaluated under the firm’s

The last expression is derived from [241 substituting N(t;T)

instead of M(t;T). Considering that AU.&- < 0, it iseasy to

check that as T tends to zero the second derivative can be

positive, whilst as T tends to infinite, it becomes negative. In

other words, depending on the value assumed by the technical

parameters Vp may be downward sloping and convex when T is close

to zero and upward sloping and concave as T increases, with a

in the text.

we can obtain the welfare

rules:
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(B6)

where 18t) evolves according to [21] in [0,T) and to [15] in

[T,~).

Again taking account of the following limits:

it is possible to verify that, if T = 0:

B7)

hilst, if T = co :

B8)

Equations (B7) and (B8) allow us to examine the trends of

(B6) when T tends to zero or infinite. Recalling that

(eo;T) = N(O;T)004, if T = 0:
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whilst if T = CO:

Moreover, since:

Confronting the above inequalities with those of Vp and V, we get

the four cases shown in figs. 9-12.

Finally, to analyze the behavior of (B6) within the interval

[0.@) we take the first and second derivative with respect to T.

The first yields:

( B )

dV
Since r > 0, and E. DTx;~lT is positive, the sign of (B9) is(1

not determined a priori. The first term on the r.h.s. represents

the agency’s marginal gain when T increases, evaluated according

to the firm’s value function. The second term, in turn, is the
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expected marginal loss the agency will incur,

tax payments, when the introduction of fees is

Taking the second derivative we obtain:

in terms of reduced

delayed.

(B10)

where:

where the last expression is derived from [24]. Considering that

.Q!#L> 0, it is easy to check that as T tends to zero the

second derivative can be negative, whilst as T tends to infinite,

it becomes positive. In other words, depending on the value

assumed by the technical parameters, W’ may be upward sloping and

concave when T is close to zero and downward sloping and convex

as T increases, with a maximum given by as shown in the

text.
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